On the switching construction of Steiner quadruple systems
نویسندگان
چکیده
The structure of Steiner quadruple system S(v, 4, 3) of full 2-rank v− 1 is considered. It is shown that there are two types (induced and singular) of such systems. It is shown that induced Steiner systems can be obtained from Steiner systems S(v, 4, 3) of 2-rank v − 2 by switching construction which is introduced here. Moreover, all non-isomorphic induced Steiner systems S(16, 4, 3) of full 2rank 15 are enumerated. It is found that there are 305616 such non-isomorphic systems S(v, 4, 3), which are obtained from all 708103 non-isomorphic such systems of rank 14 studied earlier.
منابع مشابه
Constructions for Steiner quadruple systems with a spanning block design
A singular direct product construction is presented for Steiner quadruple systems with a spanning block design. More constructions are also provided using Steiner systems S(3; k; v) and other designs. Small orders for v = 40 and 52 are constructed directly. Some in1nite classes of orders are also obtained. c © 2002 Elsevier Science B.V. All rights reserved.
متن کاملAn infinite family of Steiner systems S(2, 4, 2m) from cyclic codes
Steiner systems are a fascinating topic of combinatorics. The most studied Steiner systems are S(2,3,v) (Steiner triple systems), S(3,4,v) (Steiner quadruple systems), and S(2,4,v). There are a few infinite families of Steiner systems S(2,4,v) in the literature. The objective of this paper is to present an infinite family of Steiner systems S(2,4,2m) for all m ≡ 2 (mod 4)≥ 6 from cyclic codes. ...
متن کاملClassification of steiner quadruple systems of order 16 and rank 14
A Steiner quadruple system S(v, 4, 3) of order v is a 3-design T (v, 4, 3, λ) with λ = 1. In the previous paper [1] we classified all such Steiner systems S(16, 4, 3) of order 16 with rank 13 or less over F 2. In particular, we have proved that there is can be obtained by the generalized doubling construction, which we give here. Our main result is that there are exactly 684764 non-isomorphic S...
متن کاملConstructions for generalized Steiner systems GS (3, 4, v , 2)
Generalized Steiner systems GS (3, 4, v, 2) were first discussed by Etzion and used to construct optimal constant weight codes over an alphabet of size three with minimum Hamming distance three, in which each codeword has length v and weight four. Not much is known for GS (3, 4, v, 2)s except for a recursive construction and two small designs for v = 8, 10 given by Etzion. In this paper, more s...
متن کاملThe last twenty orders of (1, 2)-resolvable Steiner quadruple systems
A Steiner quadruple system (X, B) is said to be (1, 2)-resolvable if its blocks can be partitioned into r parts such that each point of X occurs in exactly two blocks in each part. The necessary condition for the existence of (1, 2)-resolvable Steiner quadruple systems RSQS(1, 2, v)s is v ≡ 2 or 10 (mod 12). Hartman and Phelps in [A. Hartman, K.T. Phelps, Steiner quadruple systems, in: J.H. Din...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008